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Pontryagin,  s pr inc ip le  of the m a x i m u m  is used for  finding the opt imum fuel d is t r ibut ion 
in t e r m s  of the min imum t e m p e r a t u r e  drop f r o m  the cen te r  to the edge of a d i spe r s e  fuel 
e lement .  The re su l t  is i l lus t ra ted  on a speci f ic  example .  

Since recent ly ,  va r ious  ma thema t i ca l  methods have been success fu l ly  used for  opt imizing the cha r -  
a c t e r i s t i c s  of nuc lear  power  plants .  Along with the development  and use  of c l a s s i ca l  methods [1, 2], much 
at tent ion has  a lso  been paid to Pon t ryag in ' s  pr inciple  of the m a x i m u m  [3, 4]. For  opt imizat ion by the mos t  
c o m m o n  numer i ca l  methods [5, 6], the appara tus  of coupled equations and the function of ma t e r i a l  e f fec t ive-  
ne s s  I7-10] have a lso  been found ve ry  useful .  In this a r t i c le  the authors  will apply Pon t ryag in ' s  pr inciple  
of the m a x i m u m  [111 to solving the p rob l em of opt imum fuel d is t r ibut ion with the mIn imum t e m p e r a t u r e  
d rop  in a flat d i spe r se  fuel e lement ,  which is ve ry  impor tan t  f rom the standpoint of lowering the peak t e m -  
p e r a t u r e  and reducing the t h e r m a l  s t r e s s e s .  One can obtain an analogous solution for  a cyl indr ica l  heat  
emi t t ing  e lement .  Fuel e l ements  of the d i spe r s e  type, made of fuel (UO2, for  example) embedded in a 
ma t r i x  (s ta in less  s teel ,  molybdenum, tungsten, etc.) have be t t e r  t he rmophys ica l  and s t rength  c h a r a c -  
t e r i s t i c s  then fuel e l emen t s  of pure  fuel.  The t he rma l  conductivity X of a fuel and ma t r ix  mix tu re  is a 
function of the t he rm a l  conduct ivi t ies  of its components  and of the volume concentra t ion  of fuel e: 

~- = f (~, ~G, z0 .  (1) 

In o r d e r  to solve the s ta ted  p rob lem,  it is  n e c e s s a r y  to obtain a min imum t e m p e r a t u r e  drop  AT between the 
cen te r  plane of the plate  (z = 0) and i ts  cooled edges (z = ~-L) at a given mean  fuel concentrat ion:  

L 1 

= ! ~(z) d z =  ~(p) d0 (2) 
L . 

0 0 

(p ~ z / L  is  a d imens ion less  coordinate) ,  at a given plate thickness 2L, and at a given t he rma l  flux densi ty  
at the cooled plate edge 

L 

q = .t' q~ (z) dz. (3) 
0 

The meaning  of condition (3) is that the power  of a fuel e lement  r ema ins  constant  for  the solution of the i r  
p r o b l e m .  The r e l e a s e d  heat  qv and the fuel concentra t ion  e a r e  re la ted  as follows: 

q,, = Ae, (4) 

where  A = A[e(p), p] is a functional de te rmined  by the neu t ron-phys ica l  des ign of a fuel e lement .  

According to exp re s s ion  (1), the t he rma l  conductivity of the mix ture  is an explicit  function of c o o r -  
dinate z through e. The d i f ferent ia l  equation of heat  conduction for  a heat  emit t ing plate with ), = %(e(z)) is 

d~T , 1 d~,(~(z)) rdT , q~(z) ----0; 
dz ~ ~. (e (z)) dz dz X (s (z)) 
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with the boundary  condi t ions  T = T(L) at z = L and d T / d z  

which y ie lds  

= 0 a t z  = 0 .  
2 

dT 1 S 
dz -- ~ (e (z)) qv (z') dz ~, 

0 

Its so lu t ion  is 

dz' i T(z) = - -  )~(e(z ')) .  G(z")dz"-FCI" 
0 0 

At y = L we have T = T(L) and, t he r e fo re ,  
L z t 

dz' j' qo (z') dz'q T (z) = T (L) T j' 
z 0 

The t e m p e r a t u r e  drop  AT = T ( 0 ) - T ( L )  is 
L z ~ 

AT = ;~ (e (z') ) G (z") dz'q (5} 
0 0 

This  is the funct ional  which m u s t  be m i n i m i z e d .  

The  subsequen t  ana lys i s  will  show that  the so lu t ion  to this p r o b l e m  e a n b e  obtained even for  a m o r e  
g e n e r a l  f o r m  of funct ional  (5). In that  ca se  an addi t ional  n e u t r o - p h y s i c a l  des ign  of the fuel e l emen t  b e -  
c o m e s  n e c e s s a r y .  Here ,  fo r  s impl ic i ty ,  we will  a s s u m e  that both k and qv a re  l inea r  funct ions  of  the fuel 
c o n c e n t r a t i o n  r 

G = Ae (z) (A = idem). (7) 

Rela t ion  (6) [12] is of ten used  in p r a c t i c e .  A s s u m p t i o n  (7) is va l id  only in the c a s e  of a r e a c t o r  with a r ig id  
neu t ron  s p e c t r u m  and a s m a l l  b locking  ef fec t .  It then fol lows f r o m  the condi t ions  ~-= idem and L = idem 
that  a l so  q = idem.  In se r t i ng  (6) and (7) into (5) and rep lac ing  z by the d i m e n s i o n l e s s  coord ina te  p = z / L ,  
we obta in  

l p 

 TAL'; M  t 
O" 0 

This  f o r m u l a  can  be conven ien t ly  r ewr i t t en  as  

i o ~ (p')dV 0 - -  aT;~M ._ ' d,o, (8)  
AL2 0 (1-- Be (O)) 

where  B = 1 - X F / X  M and 0 = AT �9 XM/ALZ deno tes  the d i m e n s i o n l e s s  t e m p e r a t u r e  d rop .  Thus ,  in a c -  
c o r d a n c e  with the o r ig ina l ly  fo rmu la t ed  p rob l em,  it is n e c e s s a r y  to find the fuel d i s t r ibu t ion  a(p) (0 -< r 
-< 1) a c r o s s  the plate  th ickness  which m i n i m i z e s  funct ional  (8) at a g iven mean  fuel  c o n c e n t r a t i o n  2". We 
note t h a t 0 _ < ~ _ <  1 (see (2)) a n d 0 _ < ] 3 <  1 w h e n k  F _ < k  M. 

F o r  solving the p r o b l e m  we use  P o n t r y a g i n ' s  p r inc ip le  of the m a x i m u m ,  as it is  i m m e d i a t e l y  evident  
that  with k F = k M the en t i r e  fuel  m a t e r i a l  is bes t  p laced  at the plate  edges  c o r r e s p o n d i n g  to the e x t r e m e  
va lues  of the so lu t ion  0 and 1 within the def ined r ange .  Consequent ly ,  the p r o b l e m  cannot  be so lved  by 
the c l a s s i c a l  method of  va r i a t i ona l  ca l cu lus .  In a c c o r d a n c e  with [11], we i n t roduce  the fol lowing s y m b o l s :  

0" 

P .I e(p')dp' p 

x~ ; ~ x~ f (1-- B~ (0")) dp", ( p ) = .  e(V)dV, ~(0)-~u(p) 
0 0 

and, ins tead  of funct ional  (8), we will  c o n s i d e r  the fol lowing s y s t e m  of d i f fe ren t i a l  equat ions  

dx~ ( P )  - x l  (P~) , --dxl (P) - u (p) (9) 
dp 1-- Bu (p) dp 

with the boundary  condi t ions  x~ = 0, x~ = 0mi n, xl(0) = 0, x�94 = 5. Thus ,  the p r o b l e m  has  been  
reduced  to that o f  f inding the op t imum c on t ro l  u(p) and the c o r r e s p o n d i n g  t r a j e c t o r y  in the phase  space  
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(x ~ x I) which will  y ie ld  the m i n i m u m  coord ina te  x i (1) at point  p = 1. 
p r inc ip l e  of the m a x i m u m  [11], we c o n s t r u c t  the aux i l i a ry  funct ion 

H = g o  (P) xl (p) + 'u (p) u (p). 
I - -  Bu (p) 

In o r d e r  that  the op t i m um  p r o c e s s  (u(p), x~ xl(p)) can  be found, 
tern of equat ions  for  funct ions  ,t,0, 'I, 1 

dgo (P) OH dg~ (p) OH 

dp O x ~ ' dp Ox 1 ' 

with which the condi t ion  of the m a x i m u m  

sup H (go, g~, x 1, v ) =  H (go, g~, x ~, u). 
0-~v~l 

will be sa t i s f i ed  at any point  p on the in t e rva l  [0, 1]. 

In a c c o r d a n c e  with Pon t ryag in ,  s 

(i0) 

there must exist a solution to the sys- 

(11) 

(12) 

F r o m  the f i r s t  equa t ion  in (11) we have  @0 = cons t .  Acco rd ing  to [11], we a s s u m e  that  @0 = - 1 .  T h e n  
the so lu t ion  to the second  equat ion in (11) will  be 

P 

t" do' gl(P) ~ . 1- -Bu(p ' ) - t -  C. (13) 
0 

From the condition xi(1) ---~ one can determine C, but not explicitly. It will be explained here how this 
condition is to be used for solving the problem. The form of function ~1(P) indicates that it is a continuous 
i n c r e a s i n g  funct ion.  

Let  us  now examine  funct ion  H in (10). F r o m  the s tandpoint  of so lv ing  the s y s t e m  (11), we note that  
the f i r s t  t e r m  on the r i gh t -hand  s ide of (10) on the in te rva l  [0, 1] r e p r e s e n t s  a d e c r e a s i n g  hype rbo l i c  func-  
t ion of the va r i ab l e  u. The  second  t e r m  r e p r e s e n t s  a s t r a i g h t  line which, depe.nding on the s ign of funct ion 
~I,l(p) , r i s e s  o r  fa l ls  wi thin  the in te rva l  0 -< u _< 1. It fol lows f r o m  the re  that  funct ion H of the va r i ab l e  u 
has  e i the r  one m a x i m u m  within the in te rva l  [0, 1] o r  r e a c h e s  i ts  h ighes t  value at boundary  u = 0 o r  bound-  
a r y u  = 1. 

B e f o r e  a t t empt ing  to d e t e r m i n e  the op t imum cont ro l ,  the equat ion  fo r  the de r iva t ive  

OH_ == Bxl (P) -~ g~ (p) (14) 
o .  ( I -  Bu (p)) 2 

will be used for revealing certain general properties of the optimum control. 

Let us consider point p = 0. At this point 8H/au - C, i.e., the derivative has always the same sign 
and does not depend on u. Consequently, according to the principle of the maximum (12), u(0) = 0 when 
C < 0 or u(0) = 1 when C > 0. This is so because, with C < O, function H only decreases and, therefore, 
reaches its maximum at u = 0, while with C > 0 it only increases and reaches its maximum at point u = 1. 

When C < 0, there is an interval 0 -< p --- P0 where function ~I(P) < 0 and thus u(p) = 0, inasmuch as 
0H/Ou < 0 on this interval; furthermore, function ~1(P) = C + p (see (13)). The value of point 

p o = - - c  (15) 

is  obta ined f r o m  the condi t ion  el(P0) = 0. 
po in t  P0' 

It follows f r o m  h e r e  that the fuel can  only be p laced  above the 

We will  now examine  the value  of u at point P0. Since xl(P0 ) -- 0 and ~l(P0) -- O, hence  s e r i e s  expan-  
s ions  of these  funct ions  in the v ic in i ty  of  point  P0 on the r igh t -hand  s ide will  t oge the r  with (13) y ie ld  

x ~ (p) = x '  (po) + .ax~ (po) (p _ po) + . . .  + = u (po).(p--po), 
dp 

~ (p) = ~I,~ (po) + d %  (Po) (p - - P o ) +  , . .  § = ( p -  Po) 
dp 1- -  Bu (Po) 

In se r t i ng  these  r e l a t ions  into (14), we obtain  

OH (p) (P--Po) (1 Bu(p0) 1 (16) 
0-~ 1-- Bu (Po) 1 ~ ~o) ', " 

If we a s s u m e  that,  when aH/au(p0) = o,-u(P0i a s s u m e s  the va lue  of  s o m e  point within the in t e rva l  [0, 1] 
w h e r e  it is defined, then E q .  (16) y ie lds  u(P0) = l / 2 B .  F o r  a r ea l i za t i on  of  this case ,  p a r a m e t e r  B m u s t  
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have a value within the interval  0.5 -< t3 _< 1, because u(P0) cannot exceed unity. An analysis  of the expres -  
sion inside the parentheses  in Eq. (16), which completely determines  the sign of the derivative,  Will also 
establ ish that OH/8u(p) > 0 near  P0 on the r ight-hand side, for any value of u(p0) with 0 -< t3 < 0.5. Accord-  
ing to the principle of the maximum, this yields u(p0) = 1. Consequently, 

u(po)= ;__/1 :for 0 . .<B<0 .5 ,  
(17) 

for 0 5 - . < 8 < 1  

It thus has been established that at point P0 the value of function u(p) jumps by _> 0.5. 

We now proceed to the case where C > 0. It has been established ea r l i e r  that here  u(0) = 1. Func- 
tion u(p) must  maintain this value also in the immediate vicinity of point p = 0. This follows f rom the form 
of the derivat ive (14) and express ion  (13). Let Pi denote a point where u(p) : 1. An analysis  of express ion 
(14) with u(p) assumed discontinuous at point Pi will prove that, conversely,  function u(p) is continuous at 
this point. Therefore ,  the condition 3H/3u(pl) = 0 will yield an express ion for point Pl: 

pl=C (1-- B) 2 (18) 
(2B --1) 

Since always Pl -> 0, hence C > 0 only when 0.5 < B < 1. 

Thus, the preceding discuss ion has clarif ied some s t ruc tura l  features  of the optimum fuel d is t r ibu-  
tion ac ros s  the plate thickness.  A complete solution to this problem will be sought by the method of suc-  
cess ive  approximations,  applied to the following sys tem of equations: 

P 

x: (o) = .f u (09 dO', (19) 
0 

P 

j ' dp' ~- C, (20) 
W: (p) = 1-- Bu (p') 

o 

, 
U (p) (21) 

v~ (p) / " 

Express ion  (21) is obtained f rom (14) under the condition that 0H/au  = 0, i.e., it descr ibes  the opti- 
mum fuel distr ibution for those values of p for  which this distr ibution assumes  values within the range 
where it is defined.- 

The genera l  fo rm of sys tem (19)-(21) leads to the important  conclusion that, when C < 0, the solution 
to the sys tem is a constant not equal to ze ro  on the interval  [P0, 1]. Indeed, denoting this solution by ~, 
we have 

x :  (p)  : U ( p  - -  Po) a n d  tt'r o (p)  - -  (p  - -  Po) 
I + B ~  " 

Inser t ing this function into express ion (21), we find that ~ = 1 /2B  and this agrees  exactly with the value of 

U(Po) (see (17)). 

Taking into account express ions  (16) and (17) for analyzing the sign of the derivat ive (14), we may 
conclude that for 0 -< 13 < 0.5 the function u(p) = 1 on the interval  [P0, 1] when C < 0. 

Thus, for negative values of the constant C we have obtained an analytical solution to the problem.  
For  values of ]3 within the interval  [0, 0.5] 

u:(p) = {01 forf~ po~.< p-~ 0 < p <  Po,1. (22) 

Moreover ,  P0 = l - E ,  which follows f rom the condition that xl(1) = ~-. For  values of B within the upper in- 
terval  [0.5, 1] we have 

0 for 0 - ~ p ~ p  0, (23) 
u ( o ) =  1 _. 

-~-ff for Po--.< P ~ 1. 

Here the boundary value of P0 is determined f rom another express ion  P0 = 1 - 2 ~ B .  

The solution to sys t em (19)-(21) for  posit ive values of the constant C is not as simple to formulate  
as  for negative values.  In this case calculations were made by the method of success ive  approximations.  
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u(p) 

o,8 

0,5 7 ~  H 
'~(O) 

o Po ;P 
l 

o Oo IP 

n o,z o/, q6 ~a p o ,5 a 
Fig. 1 Fig. 2 

Fig. 1. Optimum fuel distribution across the thickness of a 
fiat fuel element, for various values of the mean volume con- 
centration of fuel ~ when B = 0.7. 

Fig. 2. Trends of optimum fuel distributions across the plate 
thickness, for various ranges of ~'and B values. 

Consider ing  that the total  quantity of fuel ~ is uniquely re la ted  to the constant  C, the value of the la t ter  
was used  as the ini t ial  p a r a m e t e r  within the in terva l  [0, 2 B - 1 / ( 1 - B )  2] (see (18)). The calculat ion p r o -  
cedure  by this method was as fol lows.  With function u(p) = 1 on the in te rva l  [0, Pt] and function u(pl) con-  
tinuous at point Pi, we se lec ted  some ze ro th  approximat ion  u0(P). Then, with the aid of expres s ions  (19) 
and (20), we calcula ted functions xl(p) and ~I(P)- 

Inser t ing  these  functions in to  (21) yielded the next (first)  approximat ion  ut(p) , with which the ca lcu la -  
t ion cycle  was repeated,  e tc .  The p r o c e s s  was t e rmina ted  when the m a x i m u m  dif ference  lun+l(p)-Un(P)l  
f e l lbe low some  given value .  Finally,  with the aid of this solution, we de te rmined  the total quantity of fuel 

cor responding  to the or ig inal ly  a s s u m e d  value of C. The i te ra t ion  converged r a the r  fas t .  For  a solution 
with an e r r o r  not g r e a t e r  than 3%, it was n e c e s s a r y  to go through 3-4 i t e ra t ion  cyc les  for  the m o s t  rough 
e s t ima t e  of u0(p). 

F o r  i l lus t ra t ion,  the op t imum fuel d is t r ibut ion a c r o s s  the plate th ickness  is shown in Fig. 1 for  B 
= 0 . T a n d v a r i o u s v a l u e s  of-~. It is evident h e r e  that, as -~ i n c r e a s e s ,  the fuel f i l ls  in f i r s t  f r o m  the plate 
edges  toward the cen te r  at a un i fo rm concentra t ion  equal to 1/2B until -~ = 1/2B (P0 = 0). Then, as E b e -  
gins to exceed this value slightly,  there  occurs  a jump: u(0) = 1 along the in te rva l  [0, pt] where  u(p) = 1, 
and at  p > Pt the fuel concent ra t ion  drops  continuously toward the plate edge. As ~ i n c r e a s e s  fur ther ,  the 
fuel f i l ls  in f r o m  the cen te r  toward the edge. 

Thus,  th ree  c h a r a c t e r i s t i c  modes  of the solution to the p rob lem have been es tabl ished:  (22), (23), 
and the case  where  C > 0. Since arty solution is uniquely de te rmined  by two p a r a m e t e r s  -~ and B, hence in 
the (~, B) space  within the square  0 -< -g-< 1, 0 -< B _< 1 to each  mode co r r e sponds  a comple te ly  defined 
region.  These  regions  a r e  shown in Fig. 2 along with the qualitative t rend of the opt imum fuel d is t r ibut ion 
u(p) for  each.  The boundary between regions  II and III is es tab l i shed  f r o m  the condition that P0 = 1-2-sB 
----0. 

The large d i f fe rence  between the opt imum dis t r ibut ions  can be explained as follows. At smal l  va lues  
of B, when the t h e r m a l  conduct ivi t ies  of both mix tu re  components  a re  close (~F ~ ~M), the fuel is  bes t  
p laced at the plate  edge (region I) f rom where  heat  can be r emoved  m o r e  effect ively .  As the value of B in- 
c r e a s e s ,  with XF becoming  s m a l l e r  than ?~M, the p lacement  of fuel at the edge begins to impede the heat  
r e m o v a l  f r o m  inner  l aye r s  and, there fore ,  the fuel must  be diluted in the ma t r i x  m a t e r i a l  (region II). As 
B i n c r e a s e s  st i l l  fu r the r  and -~ too, the fuel begins to block the heat  flow f r o m  the plate to such an extent 
that  m o s t  of it mus t  be p laced at the cen te r  (region III). 

We note that the op t imum fuel d is t r ibut ion in regions  I and II is v e r y  convenient  f r o m  the standpoint 
of technological  design, because  the fuel e lement  is then made up of two zones with a un i form composi t ion  
each: the inner  zone, m o r e o v e r ,  containing only pure  ma t r i x  m a t e r i a l .  This  sugges ts  that, when theva lues  
of p a r a m e t e r s  B and E lie within the ranges  I and II, one should cons ider  redesigning the fuel e lement  
s t ruc tu re :  the m a t r i x  m a t e r i a l  In the cen t ra l  zone does not s e r v e  as dilutant now for  improving  the t he r -  
ma l  conductivity of the mix tu re  and, the re fo re ,  may  be e l iminated .  
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In conclusion, we consider  the following comment  to be in o rder .  The preceding analysis  of the 
problem applies to the case where the optimizing functional appears  as a quadrature of a differential  equa- 
tion. In a more  general  case (multidimensionality, t ransiency,  tempera ture-dependence  of physical  
proper t ies ,  etc.) the tempera ture  of a fuel element can be determined only numericaliy~ Linear  tem-  
pera tu re  functionals can be minimized then with the mathematical apparatus of coupled equations of heat 
conduction [13] by the method shown in [6], for example. 

XF, ~M, ~ 

Z 

L 
p = z / L  
q 

% 
A = q v / ~  
T 
AT 
0 = ATXM/AL 2 

B = 1 - ~t F/XM 
u(p) =- ~(p) 

NOTATION 

are the thermal conductivity of fuel, of matrix material, and of the mixture; 
are the volume concentration and mean volume concentration of fuel; 
is the space coordinate; 
is the half- thickness  of fuel plate; 
is the dimensionless  coordinate;  
is the thermal  flux density at plate edge; 
is the specific (per volume) heat generat ion;  
is the coefficient relating qv and ~; 
is the tempera ture ;  
is the tempera ture  drop between center  and edge of plate; 
is the dimensionless  tempera ture  drop; 
is the dimensionless  pa rame te r ;  
is the control  function. 
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